logo
Jupyter-JSC Documentation
Kernels hpc singularity
Initializing search
      • Overview
      • Authentication
      • 2-Factor authentication
      • Available Resources and Tools
      • JupyterLab 4.3
      • JupyterLab 4.2
      • Custom Docker Images
      • Repo2Docker ( Binder )
      • Useful Tips & Tricks
    • Workshops
    • Support

    header.png

    Author: Katharina Höflich
    Index

    Install containerized Jupyter kernel at Jupyter-JSC

    This Jupyter notebook will walk you through the installation of a containerized Jupyter kernel (for use at Jupyter-JSC, but it should actually work with any Jupyter server on a system where Singularity is installed). Considerable performance improvements (especially with respect to kernel start-up times) over e.g. conda-based Jupyter kernels on distributed filesystems, as are typically installed on HPC systems, might be experienced. In the example below, the base-notebook from the Jupyter docker stacks is used as an IPython kernel (already having the required ipykernel package installed), the approach presented here might be extended to any other Jupyter kernel compatible programming language, though.

    Requirements:

    • Python environment with an installed ipykernel package in a Docker (or Singularity) container
    • container group access for the JSC systems as described here in the docs

    Check that the Singularity container runtime is available via the JupyterLab environment,

    In [1]:
    Copied!
    singularity --version
    
    singularity --version
    singularity version 3.6.4-1.el8
    

    Specify the filesystem location that stores the Singularity container image,

    In [2]:
    Copied!
    IMAGE_TARGET_DIR=/p/project/cesmtst/hoeflich1/jupyter-base-notebook
    
    IMAGE_TARGET_DIR=/p/project/cesmtst/hoeflich1/jupyter-base-notebook

    Optional, if you already have a Singularity container image available at the above location: Convert a containerized Python environment (e.g. the Jupyter base-notebook that is available via Dockerhub) into a Singularity container image to be used as an example here,

    In [3]:
    Copied!
    mkdir -p ${IMAGE_TARGET_DIR}
    
    mkdir -p ${IMAGE_TARGET_DIR}

    Note that pulling and converting the Dockerhub image will take a bit of time,

    In [4]:
    Copied!
    singularity pull ${IMAGE_TARGET_DIR}/jupyter-base-notebook.sif docker://jupyter/base-notebook &> singularity.log
    
    singularity pull ${IMAGE_TARGET_DIR}/jupyter-base-notebook.sif docker://jupyter/base-notebook &> singularity.log
    In [5]:
    Copied!
    cat singularity.log | grep -v warn
    
    cat singularity.log | grep -v warn
    INFO:    Converting OCI blobs to SIF format
    INFO:    Starting build...
    Getting image source signatures
    Copying blob sha256:da7391352a9bb76b292a568c066aa4c3cbae8d494e6a3c68e3c596d34f7c75f8
    Copying blob sha256:14428a6d4bcdba49a64127900a0691fb00a3f329aced25eb77e3b65646638f8d
    Copying blob sha256:2c2d948710f21ad82dce71743b1654b45acb5c059cf5c19da491582cef6f2601
    Copying blob sha256:e3cbfeece0aec396b6793a798ed1b2aed3ef8f8693cc9b3036df537c1f8e34a1
    Copying blob sha256:48bd2a353bd8ed1ad4b841de108ae42bccecc44b3f05c3fcada8a2a6f5fa09cf
    Copying blob sha256:235d93b8ccf12e8378784dc15c5bd0cb08ff128d61b856d32026c5a533ac3c89
    Copying blob sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1
    Copying blob sha256:b6c06056c45bc1da74604fcf368b02794fe4e36dcae881f4c6b4fa32b37a1385
    Copying blob sha256:60918bcbe6d44988e4e48db436996106cc7569a4b880488be9cac90ea6883ae0
    Copying blob sha256:762f9ebe4ddc05e56e33f7aba2cdd1be62f747ecd9c8f9eadcb379debf3ebe06
    Copying blob sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1
    Copying blob sha256:1df9d491a0390ecc3f9fac4484c92b2a5f71a79450017f2fca1849f2d6e7f949
    Copying blob sha256:be84c8c720e3c53037ac2c5cbc53cf9a2a674503b2c995da1351e5560f60cc12
    Copying blob sha256:28807e96859dc8c00c96255dfa51a0822380638a092803e7143473d1870970fb
    Copying blob sha256:bcdaf848f29a8bf0efc18a5883dc65a4a7a6b2c6cf4094e5115188ed22165a00
    Copying blob sha256:49777cff52f155a9ba35e58102ecec7029dddf52aa4947f2cffbd1af12848e81
    Copying blob sha256:7fb3bffa2e730b052c0c7aabd715303cc5830a05b992f2d3d70afeffa0a9ed4f
    Copying blob sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1
    Copying config sha256:79f074439b14ae0634f2f217e5debc159c4e8c3a9ff2e0119e4dc88f9c7e21a5
    Writing manifest to image destination
    Storing signatures
    2021/01/19 11:59:33  info unpack layer: sha256:da7391352a9bb76b292a568c066aa4c3cbae8d494e6a3c68e3c596d34f7c75f8
    2021/01/19 11:59:34  info unpack layer: sha256:14428a6d4bcdba49a64127900a0691fb00a3f329aced25eb77e3b65646638f8d
    2021/01/19 11:59:34  info unpack layer: sha256:2c2d948710f21ad82dce71743b1654b45acb5c059cf5c19da491582cef6f2601
    2021/01/19 11:59:34  info unpack layer: sha256:e3cbfeece0aec396b6793a798ed1b2aed3ef8f8693cc9b3036df537c1f8e34a1
    2021/01/19 11:59:34  info unpack layer: sha256:48bd2a353bd8ed1ad4b841de108ae42bccecc44b3f05c3fcada8a2a6f5fa09cf
    2021/01/19 11:59:34  info unpack layer: sha256:235d93b8ccf12e8378784dc15c5bd0cb08ff128d61b856d32026c5a533ac3c89
    2021/01/19 11:59:34  info unpack layer: sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1
    2021/01/19 11:59:34  info unpack layer: sha256:b6c06056c45bc1da74604fcf368b02794fe4e36dcae881f4c6b4fa32b37a1385
    2021/01/19 11:59:34  info unpack layer: sha256:60918bcbe6d44988e4e48db436996106cc7569a4b880488be9cac90ea6883ae0
    2021/01/19 11:59:34  info unpack layer: sha256:762f9ebe4ddc05e56e33f7aba2cdd1be62f747ecd9c8f9eadcb379debf3ebe06
    2021/01/19 11:59:34  info unpack layer: sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1
    2021/01/19 11:59:34  info unpack layer: sha256:1df9d491a0390ecc3f9fac4484c92b2a5f71a79450017f2fca1849f2d6e7f949
    2021/01/19 11:59:36  info unpack layer: sha256:be84c8c720e3c53037ac2c5cbc53cf9a2a674503b2c995da1351e5560f60cc12
    2021/01/19 11:59:40  info unpack layer: sha256:28807e96859dc8c00c96255dfa51a0822380638a092803e7143473d1870970fb
    2021/01/19 11:59:40  info unpack layer: sha256:bcdaf848f29a8bf0efc18a5883dc65a4a7a6b2c6cf4094e5115188ed22165a00
    2021/01/19 11:59:40  info unpack layer: sha256:49777cff52f155a9ba35e58102ecec7029dddf52aa4947f2cffbd1af12848e81
    2021/01/19 11:59:40  info unpack layer: sha256:7fb3bffa2e730b052c0c7aabd715303cc5830a05b992f2d3d70afeffa0a9ed4f
    2021/01/19 11:59:40  info unpack layer: sha256:4f4fb700ef54461cfa02571ae0db9a0dc1e0cdb5577484a6d75e68dc38e8acc1
    INFO:    Creating SIF file...
    

    Check that the Singularity image is available,

    In [6]:
    Copied!
    ls -lah ${IMAGE_TARGET_DIR}
    
    ls -lah ${IMAGE_TARGET_DIR}
    total 177M
    drwxr-sr-x 2 hoeflich1 cesmtst 4.0K Jan 19 11:59 .
    drwxr-sr-x 5 hoeflich1 cesmtst 4.0K Jan 19 11:59 ..
    -rwxr-xr-x 1 hoeflich1 cesmtst 183M Jan 19 11:59 jupyter-base-notebook.sif
    

    Now, setup a Jupyter kernel specification with the install-jupyter-kernel.sh script from this repository (which basically writes a kernel.json file to the home directory location that Jupyter expects for user-specific kernels),

    In [7]:
    Copied!
    KERNEL_DISPLAY_NAME=Singularity-Python # don't use whitespaces here!
    SINGULARITY_IMAGE=${IMAGE_TARGET_DIR}/jupyter-base-notebook.sif
    
    KERNEL_DISPLAY_NAME=Singularity-Python # don't use whitespaces here! SINGULARITY_IMAGE=${IMAGE_TARGET_DIR}/jupyter-base-notebook.sif

    Link to install-singularity-jupyter-kernel.sh

    In [8]:
    Copied!
    ./install-singularity-jupyter-kernel.sh ${KERNEL_DISPLAY_NAME} ${SINGULARITY_IMAGE}
    
    ./install-singularity-jupyter-kernel.sh ${KERNEL_DISPLAY_NAME} ${SINGULARITY_IMAGE}

    Check that the Jupyter kernel specification was written,

    In [9]:
    Copied!
    cat ${HOME}/.local/share/jupyter/kernels/${KERNEL_DISPLAY_NAME}/kernel.json
    
    cat ${HOME}/.local/share/jupyter/kernels/${KERNEL_DISPLAY_NAME}/kernel.json
    {
     "argv": [
       "singularity",
       "exec",
       "--cleanenv",
       "/p/project/cesmtst/hoeflich1/jupyter-base-notebook/jupyter-base-notebook.sif",
       "python",
       "-m",
       "ipykernel",
       "-f",
       "{connection_file}"
     ],
     "language": "python",
     "display_name": "Singularity-Python"
    }
    

    And that the above Singularity-Python kernel is visible by the Jupyter server,

    In [10]:
    Copied!
    jupyter kernelspec list
    
    jupyter kernelspec list
    Available kernels:
      singularity-python    /p/home/jusers/hoeflich1/juwels/.local/share/jupyter/kernels/Singularity-Python
      ruby                  /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-Ruby/2.6.3-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/ruby
      ir35                  /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-R/3.5.3-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/ir35
      pyquantum-1.0         /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-PyQuantum/1.0-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/pyquantum-1.0
      pyparaview-5.8        /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-PyParaView/5.8.0-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/pyparaview-5.8
      octave                /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-Octave/5.1.0-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/octave
      julia-1.4             /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-Julia/1.4.2-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/julia-1.4
      javascript            /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-JavaScript/5.2.0-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/javascript
      cling-cpp17           /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-Cling/0.6-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/cling-cpp17
      bash                  /p/software/juwels/stages/Devel-2019a/software/JupyterKernel-Bash/0.7.1-gcccoremkl-8.3.0-2019.3.199-2019a.2.4/share/jupyter/kernels/bash
      python3               /p/software/juwels/stages/Devel-2019a/software/Jupyter/2019a.2.4-gcccoremkl-8.3.0-2019.3.199-Python-3.6.8/share/jupyter/kernels/python3
    

    If so, you should be able to choose and connect to the containerized Python kernel from the drop down menu and/or the kernel launcher tab (a reload of the JupyterLab web page might be necessary).

    © 2025 Forschungszentrum Jülich | Legal Notice
    Made with Material for MkDocs